ปริมาณทางฟิสิกส์

ริมาณทางฟิสิกส์





ปริมาณทางฟิสิกส์
ปริมาณ (Quantity)
วิทยาศาสตร์เป็นวิชาที่ศึกษาเกี่ยวกับความจริงที่สามารถพิสูจน์ได้ด้วยกระบวนการทางวิทยาศาสตร์ นำความรู้ที่ได้จากการศึกษาทดลอง จดบัทึกมารวบรวมเป็นกฎ ทฤษฎี เพื่อเป็นความรู้ในการอธิบายปรากฎการณ์ต่างๆ ที่เกิดขึ้น ซึ่งการศึกษาวิทยาศาสร์เป็นการศึกษา2 ส่วนคือ เชิงคุณภาพ เป็นการศึกษาบรรยายเชิงข้อมูลพรรณนา ตามสภาพการรับรู้ของมนุษย์ เช่น การบรรยายรูปลักษณะ สี กลิ่น รส และเชิงปริมาณ เป็นการศึกษาข้อมูลเชิงตัวเลข ซึ่งได้จากการสังเกต และเครื่องมือวัด เช่น ความยาว มวล เวลา ปริมาณต่างๆ ที่เกี่ยวข้องกับวิชาฟิสิกส์แบ่งออกได้เป็น
ปริมาณในทางฟิสิกส์ มี 2 ปริมาณ คือ
1. ปริมาณสเกลาร์ (Scalar) เป็นปริมาณที่บอกขนาดเพียงอย่างเดียว เช่น มวล , อัตราเร็ว , พลังงาน ฯลฯ
2. ปริมาณเวกเตอร์ (Vector) เป็นปริมาณที่บอกทั้งขนาดและทิศทาง เช่น ความเร็ว , ความเร่ง , การกระจัด , แรง ฯลฯ
1. การรวมเวกเตอร์
การรวมเวกเตอร์ หมายถึง การบวกหรือลบกันของเวกเตอร์ตั้งแต่ 2 เวกเตอร์ ขึ้นไป ผลลัพธ์ที่ได้เป็นปริมาณเวกเตอร์ เรียกว่า เวกเตอร์ลัพธ์ (Resultant Vector) ซึ่งพิจารณาได้ ดังนี้
1.1 การบวกเวกเตอร์โดยวิธีการเขียนรูป ทำได้โดยเขียนเวกเตอร์ที่เป็นตัวตั้ง จากนั้นเอาหางของเวกเตอร์ที่เป็นผลบวกหรือผลต่าง มาต่อกับหัวของเวกเตอร์ตัวตั้ง โดยเขียนให้ถูกต้องทั้งขนาดและทิศทาง เวกเตอร์ลัพธ์หาได้โดยการวัดระยะทาง จากหางเวกเตอร์แรกไปยังหัวเวกเตอร์สุดท้าย

จากรูป เวกเตอร ์  = 
1.2 การบวกเวกเตอร์โดยใช้วิธีการทางคณิตศาสตร์
ให้ เวกเตอร์ ทำมุมกับ เป็นมุม q คำนวณหาเวกเตอร์ลัพธ์ได้ ดังนี้
ขนาดของเวกเตอร์ลัพธ์คำนวณได้จากกฎของโคไซน์
ทิศทางของเวกเตอร์ลัพธ์หาได้จาก
a =  ...........................................................(2)
หรือหาได้จากกฎของไซน์ ดังนี้
= =  .......................................................(3)
ข้อสังเกต จากสมการที่ (1) พบว่า
  1. เมื่อ q = (คือ และ อยู่ในทิศทางเดียวกัน) จะได้ขนาดของ โดยทิศทางของ มีทิศเดียวกับ และ 
  2. เมื่อ q = 
    2.1 ถ้า จะได้ และ มีทิศเดียวกับ  
    2.2 ถ้า จะได้ และ มีทิศเดียวกับ 
3. เมื่อ q = จะได้
ขนาด R = และ a = 
1.3 การลบเวกเตอร์
การลบเวกเตอร์ สามารถหาเวกเตอร์ลัพธ์ได้เช่นเดียวกับการบวกเวกเตอร์ แต่ให้กลับทิศทางของเวกเตอร์ตัวลบ ดังนี้
 .............................(4)
2. เวกเตอร์หนึ่งหน่วย (Unit Vector)
เวกเตอร์หนึ่งหน่วย หมายถึง เวกเตอร์ที่มีขนาดหนึ่งหน่วยในทิศทางใดๆ เช่น เวกเตอร์ สามารถเขียนได้ด้วยขนาดของ คูณกับเวกเตอร์หนึ่งหน่วย ซึ่งมีทิศทางเดียวกับ คือ
=
หรือ  =  .....................................................(5)
โดย คือ เวกเตอร์หนึ่งหน่วยที่มีขนาดหนึ่งหน่วยและทิศเดียวกันกับ 
ในระบบแกนมุมฉาก เวกเตอร์หนึ่งหน่วยบนแกน x , y และ z แทนด้วยสัญลักษณ์ และ ตามลำดับ จะได้
=  ;  =  ; = ..............................(6)
เมื่อ คือ เวกเตอร์ที่มีขนาดเท่ากับ มีทิศทางตามแนวแกน x
คือ เวกเตอร์ที่มีขนาดเท่ากับ มีทิศทางตามแนวแกน y
คือ เวกเตอร์ที่มีขนาดเท่ากับ มีทิศทางตามแนวแกน z
3. เวกเตอร์องค์ประกอบ (Component Vector)
3.1 องค์ประกอบของเวกเตอร์ใน 2 มิติ
ถ้า อยู่ในระนาบ x , y โดย ทำมุม q กับแกน x
องค์ประกอบของ ตามแกน x คือ โดย = Acosq
องค์ประกอบของ ตามแกน y คือ โดย = Asinq
ดังนั้น เวกเตอร์ เขียนแยกเป็นองค์ประกอบได้ ดังนี้
 =  ............................(7)
หรือ
= Acosq + Asinq 
โดยที่ ขนาดของ 
 .................................(8)
3.2 องค์ประกอบของเวกเตอร์ใน 3 มิติ
กำหนดให้ อยู่บนระนาบ x , y ,z โดยเวกเตอร์ ทำมุมกับแกน x , y , z เป็นมุม q x , q y , q z
ตามลำดับ เวกเตอร์ สามารถแยกเป็นองค์ประกอบตามแกน x , y , z ได้ ดังนี้
ขนาดของ  แทนด้วย Ax = Acosq x โดยที่ cosq x = 
ขนาดของ แทนด้วย Ay = Acosq y โดยที่ cosq y = 
ขนาดของ แทนด้วย Az = Acosq z โดยที่ cosq z = 
ดังนั้น  =
=
ขนาด  คือ
A =  .......................................(9)
ทิศทางของเวกเตอร์ คือ มุมที่ ทำกับแกน x , y , z หาได้จาก
 :  : 
4. เวกเตอร์ตำแหน่ง (Position Vector)
เวกเตอร์ตำแหน่ง หมายถึง เวกเตอร์ที่บอกตำแหน่งของวัตถุเทียบกับจุดใดจุดหนึ่ง เรียกว่า จุดอ้างอิง
จากรูป เวกเตอร์ และ เป็นเวกเตอร์บอกตำแหน่งของจุด P และ Q เทียบกับจุด O ในระบบพิกัด โดย
จะได้
โดยขนาดของ คือ
.....................................(11)
ทิศทางของ หาได้จาก
 ...... (12)
5. การคูณเวกเตอร์ มี 2 แบบ ดังนี้
5.1 ผลคูณสเกลาร์ (Scalar product หรือ dot product แทนด้วยเครื่องหมาย " . " )
กำหนดให้ ทำมุม กับ ผลคูณสเกลาร์ของเวกเตอร์ทั้งสองมีนิยาม ดังนี้
โดยที่ A และ B เป็นขนาดของเวกเตอร์ และ ตามลำดับ
 คือ มุมระหว่างเวกเตอร์ A กับ B
คุณสมบัติของผลคูณแบบสเกลาร์
ถ้า เป็นเวกเตอร์ใดๆ และ เป็น unit vector ในแนวแกน x , y ,z จะได้ว่า
คุณสมบัติของผลคูณแบบสเกลาร์
ถ้า เป็นเวกเตอร์ใดๆ และ เป็น unit vector ในแนวแกน x , y , z จะได้ว่า
1. 
2. 
3. 
4. 
5. 
6. 
7. 
โดยที่
ผลคูณเวกเตอร์ (Vector Product หรือ Cross Product แทนด้วยเครื่องหมาย “x” )
กำหนดให้ และ เป็นเวกเตอร์ที่ทำมุม q ต่อกัน และ เป็นเวกเตอร์ลัพธ์ โดย
ขนาดของ มีนิยามว่า 
ทิศทางของ หาได้โดยใช้กฎมือขวา โดยปลายนิ้วทั้งสี่แทนทิศทางของ และหมุนไปหา จะได้นิ้วหัวแม่มือแทนทิศทางของ 
คุณสมบัติของผลคูณแบบเวกเตอร์
1. 
2. 
3. 
4. 
5. 
หรือเขียนในรูปของดีเทอร์มิแนนท์ (Determinant) ได้ว่า
โดยที่
6. การหาอนุพันธ์ของเวกเตอร์
ถ้าเวกเตอร์ และ เป็นฟังก์ชันของตัวแปรอิสระ U ดังนั้น จะได้
1. 
2. 
3. 
4. 
5. 
เลขนัยสำคัญ คือ ตัวเลขที่ได้จากการวัดโดยใช้เครื่องมือที่เป็นสเกล โดยเลขทุกตัวที่บันทึกจะมีความหมายส่วนความสำคัญของตัวเลขจะไม่เท่ากัน ดังนั้นเลขทุกตัวจึงมีนัยสำคัญ ตามความเหมาะสม เช่น วัดความยาวของไม้ท่อนหนึ่งได้ยาว 121.54 เซนติเมตร เลข 121.5 เป็นตัวเลขที่วัดได้จริง ส่วน 0.04 เป็นตัวเลขที่ประมาณขึ้นมา เราเรียกตัวเลข121.54 นี้ว่า เลขนัยสำคัญ และมีจำนวนเลขนัยสำคัญ 5 ตัว
หลักการพิจารณาจำนวนเลขนัยสำคัญ
เลขทุกตัว ถือเป็นเลขที่มีนัยสำคัญ ยกเว้น 
1. เลข 0 ( ศูนย์ ) ที่อยู่ซ้ายมือสุดหน้าตัวเลข เช่น 
0.1 มีเลขนัยสำคัญ 1 ตัว
0.01 มีเลขนัยสำคัญ 1 ตัว
0.0152 มีเลขนัยสำคัญ 3 ตัว
2. เลข 0 ( ศูนย์ ) ที่อยู่ระหว่างตัวเลขถือเป็นเลขนัยสำคัญ เช่น
101 มีเลขนัยสำคัญ 3 ตัว
1.002 มีเลขนัยสำคัญ 4 ตัว
3. เลข 0 ( ศูนย์ ) ที่อยู่ท้ายแต่อยู่ในรูปเลขทศนิยม ถือว่าเป็นเลขนัยสำคัญ เช่น 
1.20 มีเลขนัยสำคัญ 3 ตัว 
2.400 มีเลขนัยสำคัญ 4 ตัว
4. เลข 0 ( ศูนย์ ) ที่ต่อท้ายเลขจำนวนเต็ม ถ้าจะนับเป็นเลขนัยต้องทำเครื่องหมายบอก เช่น
120 มีเลขนัยสำคัญ 2 ตัว 
120 มีเลขนัยสำคัญ 3 ตัว 
200 มีเลขนัยสำคัญ 1 ตัว
200 มีเลขนัยสำคัญ 2 ตัว
200 มีเลขนัยสำคัญ 3 ตัว
5. เลข 10 ที่อยู่ในรูปยกกำลัง ไม่เป็นเลขนัยสำคัญ เช่น 
1.30 x104 มีเลขนัยสำคัญ 3 ตัว
2.501 x106 มีเลขนัยสำคัญ 4 ตัว
การบวกและการลบเลขนัยสำคัญ
ให้บวกลบข้อมูลตามปกติ แล้วเมื่อได้ผลลัพธ์ให้บันทึกโดยมีจำนวนตำแหน่งทศนิยมเท่ากับตำแหน่งทศนิยมของข้อมูลหลักที่มีจำนวนตำแหน่งทศนิยมน้อยที่สุด เช่น
1. 2.12 + 3.895 + 5.4236 = 11.4386
ปริมาณ 2.12 มีความละเอียดถึงทศนิยมตำแหน่งที่ 2
3.895 มีความละเอียดถึงทศนิยมตำแหน่งที่ 3
5.4236 มีความละเอียดถึงทศนิยมตำแหน่งที่ 4
ผลลัพธ์ 11.4386 มีความละเอียดถึงทศนิยมตำแหน่งที่ 4 ซึ่งมากกว่าเครื่องมือวัดที่อ่านได้ 2.12 , 3.895 
ดังนั้นผลลัพธ์ต้องมีเลขนัยสำคัญมีความละเอียดไม่เกินทศนิยมตำแหน่งที่ 2
ดังนั้น ผลลัพธ์ คือ 11.44
การคูณและการหารเลขนัย
ให้คูณ-หารข้อมูลตามปกติ แล้วเมื่อได้ผลลัพธ์ให้บันทึก โดยมีจำนวนค่านัยสำคัญเท่าจำนวนค่านัยสำคัญของข้อมูลหลักที่มีจำนวนค่านัยสำคัญน้อยที่สุด เช่น
1. 432.10 x 5.5 = 2376.55
ปริมาณ 432.10 มีจำนวนเลขนัยสำคัญ 5 ตัว
5.5 มีจำนวนเลขนัยสำคัญ 2 ตัว
ผลลัพธ์ 2376.55 มีจำนวนเลขนัยสำคัญ 6 ซึ่งมีจำนวนเลขนัยสำคัญได้เพียง 2 ตัว
ดังนั้น ผลลัพธ์ คือ 2.4 x 103
ที่มา http://scisometimessoserious.blogspot.com/2012/10/1.html

ไม่มีความคิดเห็น:

แสดงความคิดเห็น